Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Comput Math Methods Med ; 2020: 6374014, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123215

RESUMO

OBJECTIVE: In recent years, pulmonary fibrosis caused by paraquat poisoning is still concerned. However, no effective drugs have been developed yet to treat paraquat-induced pulmonary fibrosis. The aim of our research is to investigate whether imrecoxib can inhibit paraquat-induced pulmonary fibrosis and its possible mechanism. METHODS: Extraction of primary pulmonary fibrosis cells (PPF cells) in vitro by the method of trypsin digestion. RT-qPCR and western blot were employed to measure the transcription level and protein expression of EMT related markers in paraquat-induced A549 cells. MTT, wound-healing, and Transwell experiments were used to verify the effect of imrecoxib on the proliferation, migration, and invasion of PPF and HFL1 cells. RESULTS: Firstly, our results confirmed that paraquat can induce EMT and activate the NF-κB/snail signal pathway in lung epithelial cell A549. Furthermore, experimental results showed that imrecoxib could repress the proliferation, migration, and invasion of PPF and HFL1 cells. Finally, our study found that imrecoxib can inhibit EMT of paraquat-induced A549 cells by the NF-κB/snail signal pathway. CONCLUSION: Imrecoxib can inhibit EMT of paraquat-induced A549 cells and alleviate paraquat-caused pulmonary fibrosis through the NF-κB/snail signal pathway. Therefore, imrecoxib is a drug worthy of study in the treatment of paraquat-induced pulmonary fibrosis.


Assuntos
Paraquat/antagonistas & inibidores , Paraquat/envenenamento , Fibrose Pulmonar/tratamento farmacológico , Pirróis/farmacologia , Sulfetos/farmacologia , Células A549 , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Biologia Computacional , Inibidores de Ciclo-Oxigenase 2/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Herbicidas/antagonistas & inibidores , Herbicidas/envenenamento , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Conceitos Matemáticos , NF-kappa B/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição da Família Snail/metabolismo
2.
Sci Rep ; 10(1): 14078, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826929

RESUMO

Reckless use of herbicides like butachlor (Buta) in the fields represents a serious threat to crop plants, and hence to their productivity. Silicon (Si) is well known for its implication in the alleviation of the effects of abiotic stresses; however, its role in mitigating Buta toxicity is not yet known. Therefore, this study was carried out to explore the role of Si (10 µM) in regulating Buta (4 µM) toxicity in rice seedlings. Buta reduced growth and photosynthesis, altered nitric oxide (NO) level and leaf and root anatomy, inhibited enzyme activities of the ascorbate-glutathione cycle (while transcripts of associated enzymes, increased except OsMDHAR), as well as its metabolites (ascorbate and glutathione) and uptake of nutrients (Mg, P, K, S, Ca, Fe, etc. except Na), while addition of Si reversed Buta-induced alterations. Buta stimulated the expression of Si channel and efflux transporter genes- Lsi1 and Lsi2 while the addition of Si further greatly induced their expression under Buta toxicity. Buta increased free proline accumulation by inducing the activity of Δ1-pyrroline-5-carboxylate synthetase (P5CS) and decreasing proline dehydrogenase (PDH) activity, while Si reversed these effects caused by Buta. Our results suggest that Si-governed mitigation of Buta toxicity is linked with favorable modifications in energy flux parameters of photosynthesis and leaf and root anatomy, up-regulation of Si channel and transporter genes, ascorbate-glutathione cycle and nutrient uptake, and lowering in oxidative stress. We additionally demonstrate that NO might have a crucial role in these responses.


Assuntos
Acetanilidas/antagonistas & inibidores , Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Herbicidas/antagonistas & inibidores , Óxido Nítrico/farmacologia , Nutrientes/metabolismo , Oryza/efeitos dos fármacos , Prolina/metabolismo , Plântula/efeitos dos fármacos , Silício/farmacologia , Carotenoides/metabolismo , Clorofila/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Oryza/metabolismo , Estresse Oxidativo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/metabolismo
3.
Aging (Albany NY) ; 11(15): 5726-5743, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31403933

RESUMO

Carbohydrate overconsumption increases blood glucose levels, which contributes to the development of various diseases including obesity and diabetes. It is generally believed that high glucose metabolism increases cellular reactive oxygen species (ROS) levels, damages insulin-secreting cells and leads to age-associated diabetic phenotypes. Here we find that in contrast, high glucose suppresses ROS production induced by paraquat in both mammalian cells and the round worm C. elegans. The role of glucose in suppressing ROS is further supported by glucose's ability to alleviate paraquat's toxicity on C. elegans development. Consistently, we find that the ROS-regulated transcription factor SKN-1 is inactivated by glucose. As a result, the ROS/SKN-1-dependent lifespan extension observed in paraquat-treated animals, mitochondrial respiration mutant isp-1 and germline-less mutant glp-1 are all suppressed by glucose. Our study reveals an unprecedented interaction of glucose with ROS, which could have significant impact on our current understanding of glucose- and ROS-related diseases.


Assuntos
Caenorhabditis elegans/metabolismo , Glucose/metabolismo , Longevidade/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Glucose/farmacologia , Herbicidas/antagonistas & inibidores , Herbicidas/toxicidade , Humanos , Longevidade/efeitos dos fármacos , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Paraquat/antagonistas & inibidores , Paraquat/toxicidade , Especificidade da Espécie , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Toxicology ; 425: 152241, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31265864

RESUMO

Prolonged exposure of Fenoxaprop-ethyl (FE), a post-emergence herbicide, can cause serious damage to animals through food chain. Melatonin is synthesized by the pineal gland in mammals and believed to protect cells from oxidative stress damage. In this study, we aimed to investigate the effects of FE on mouse oocyte meiosis maturation and the protective roles of melatonin on FE-exposed oocytes by in vitro maturation model. FE exposure significantly caused defects of the first polar body extrusion, which could be protected by co-culture with melatonin. Furthermore, we examined the meiotic maturation details by performing the sperm binding, actin and tubulin immunofluorescence, ROS and apoptosis detection, and histone methylation assay. Our data showed that FE exposure to oocytes led to disrupted actin filament dynamics, mis-organized spindle, and reduced the sperm binding capacity. In addition, FE-exposure increased oxidative stress level and induced oocyte apoptosis. We also found that FE exposure resulted in histone methylation changes. Treatment with melatonin could significantly improve these phenotypes in oocytes exposed to FE. In conclusion, FE exposure can cause meiotic defects by disrupting the cytoskeletal integrality and inducing excessive ROS accumulation to initiate apoptosis in oocytes, while melatonin can reduce all these damages, suggesting that melatonin has protective effects on oocytes exposed to FE during meiotic maturation.


Assuntos
Herbicidas/toxicidade , Meiose/efeitos dos fármacos , Melatonina/farmacologia , Oócitos/efeitos dos fármacos , Oxazóis/toxicidade , Propionatos/toxicidade , Actinas/metabolismo , Animais , Epigênese Genética/efeitos dos fármacos , Feminino , Imunofluorescência , Herbicidas/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos ICR , Oócitos/fisiologia , Oxazóis/antagonistas & inibidores , Propionatos/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Interações Espermatozoide-Óvulo/efeitos dos fármacos , Fuso Acromático/efeitos dos fármacos
5.
Theranostics ; 9(3): 633-645, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809298

RESUMO

Accidental or suicidal ingestion of the world's most widely used herbicide, paraquat (PQ), may result in rapid multi-organ failure with a 60% fatality rate due to the absence of an effective detoxification solution. Effective, specific antidotes to PQ poisoning have been highly desired. Methods: The binding constant of PQ and a synthetic receptor, cucurbit[7]uril (CB[7]), was first determined in various pH environments. The antidotal effects of CB[7] on PQ toxicity were firstly evaluated with in-vitro cell lines. With in-vivo mice models, the pharmacokinetics and the biodistribution of PQ in major organs were determined to evaluate the influence of CB[7] on the oral bioavailability of PQ. Major organs' injuries and overall survival rates of the mice were systemically examined to evaluate the therapeutic efficacy of CB[7] on PQ poisoning. Results: We demonstrate that CB[7] may complex PQ strongly under various conditions and significantly reduce its toxicity in vitro and in vivo. Oral administration of PQ in the presence of CB[7] in a mouse model significantly decreased PQ levels in the plasma and major organs and alleviated major organs' injuries, when compared to those of mice administered with PQ alone. Further studies indicated that oral administration of CB[7] within 2 h post PQ ingestion significantly increased the survival rates and extended the survival time of the mice, in contrast to the ineffective treatment by activated charcoal, which is commonly recommended for PQ decontamination. Conclusion: CB[7] may be used as a specific oral antidote for PQ poisoning by strongly binding with PQ and inhibiting its absorption in the gastrointestinal tracts.


Assuntos
Antídotos/administração & dosagem , Hidrocarbonetos Aromáticos com Pontes/administração & dosagem , Herbicidas/antagonistas & inibidores , Imidazóis/administração & dosagem , Paraquat/antagonistas & inibidores , Intoxicação/terapia , Receptores Artificiais/administração & dosagem , Administração Oral , Estruturas Animais/patologia , Animais , Antídotos/farmacocinética , Antídotos/farmacologia , Hidrocarbonetos Aromáticos com Pontes/farmacocinética , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Linhagem Celular , Herbicidas/toxicidade , Imidazóis/farmacocinética , Imidazóis/farmacologia , Camundongos , Paraquat/toxicidade , Análise de Sobrevida
6.
Plant Physiol Biochem ; 129: 101-108, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29870861

RESUMO

Herbicide safeners protect crop plants from herbicide phytotoxicity, but an understanding of their molecular mechanisms is still lacking. We investigated the effects of the safener isoxadifen-ethyl and/or nicosulfuron on the expression of 10 genes, 8 glutathione transferases (GSTs), 1 glutathione transporter and 1 multidrug resistance protein gene in two maize cultivars. Nicosulfuron and isoxadifen-ethyl induce different detoxification enzyme genes. The expression analyses of the 10 genes revealed that most were expressed much higher in 'Zhengdan958' than those in 'Zhenghuangnuo No.2', both in control and in isoxadifen-ethyl- and/or nicosulfuron-treated plants. The expression levels of ZmGSTIV, ZmGST6, ZmGST31 and ZmMRP1 in two maize cultivars were up-regulated by isoxadifen-ethyl only, or in combination with nicosulfuron, whereas nicosulfuron down-regulated the expression of eight genes. Thus, ZmGSTIV, ZmGST6, ZmGST31 and ZmMRP1 could be considered safener-responsive and may be the core genes responsible for isoxadifen-ethyl increasing the tolerance of maize to nicosulfuron.


Assuntos
Oxazóis/farmacologia , Piridinas/farmacologia , Compostos de Sulfonilureia/farmacologia , Zea mays/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/efeitos dos fármacos , Glutationa Transferase/metabolismo , Herbicidas/antagonistas & inibidores , Herbicidas/metabolismo , Inativação Metabólica/efeitos dos fármacos , Inativação Metabólica/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Zea mays/efeitos dos fármacos , Zea mays/genética
7.
Environ Sci Pollut Res Int ; 25(12): 11703-11715, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29442306

RESUMO

Oxidative stress and DNA damage are involved in the glyphosate-based herbicide toxicity. Uncaria tomentosa (UT; Rubiaceae) is a plant species from South America containing bioactive compounds with known beneficial properties. The objective of this work was to evaluate the antioxidant and antigenotoxic potential of UT extract in a model of acute exposure to glyphosate-Roundup® (GR) in zebrafish (Danio rerio). We showed that UT (1.0 mg/mL) prevented the decrease of brain total thiols, the increase of lipid peroxidation in both brain and liver, and the decrease of liver GPx activity caused after 96 h of GR (5.0 mg/L) exposure. In addition, UT partially protected against the increase of micronucleus frequency induced by GR exposure in fish brain. Overall, our results indicate that UT protects against damage induced by a glyphosate-based herbicide by providing antioxidant and antigenotoxic effects, which may be related to the phenolic compounds identified in the extract.


Assuntos
Antioxidantes/farmacologia , Unha-de-Gato/química , Glicina/análogos & derivados , Herbicidas/antagonistas & inibidores , Extratos Vegetais/farmacologia , Peixe-Zebra , Animais , Dano ao DNA , Feminino , Glicina/antagonistas & inibidores , Glicina/toxicidade , Herbicidas/toxicidade , Peroxidação de Lipídeos , Fígado/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , América do Sul
8.
Nutr Neurosci ; 19(10): 434-446, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25153704

RESUMO

OBJECTIVES: Bacopa monnieri (BM), an ayurvedic medicinal plant, has attracted considerable interest owing to its diverse neuropharmacological properties. Epidemiological studies have shown significant correlation between paraquat (PQ) exposure and increased risk for Parkinson's disease in humans. In this study, we examined the propensity of standardized extract of BM to attenuate acute PQ-induced oxidative stress, mitochondrial dysfunctions, and neurotoxicity in the different brain regions of prepubertal mice. METHODS: To test this hypothesis, prepubertal mice provided orally with standardized BM extract (200 mg/kg body weight/day for 4 weeks) were challenged with an acute dose (15 mg/kg body weight, intraperitoneally) of PQ after 3 hours of last dose of extract. Mice were sacrificed after 48 hours of PQ injection, and different brain regions were isolated and subjected to biochemical determinations/quantification of central monoamine (dopamine, DA) levels (by high-performance liquid chromatography). RESULTS: Oral supplementation of BM for 4 weeks resulted in significant reduction in the basal levels of oxidative markers such as reactive oxygen species (ROS), malondialdehyde (MDA), and hydroperoxides (HP) in various brain regions. PQ at the administered dose elicited marked oxidative stress within 48 hours in various brain regions of mice. However, BM prophylaxis significantly improved oxidative homeostasis by restoring PQ-induced ROS, MDA, and HP levels and also by attenuating mitochondrial dysfunction. Interestingly, BM supplementation restored the activities of cholinergic enzymes along with the restoration of striatal DA levels among the PQ-treated mice. DISCUSSION: Based on these findings, we infer that BM prophylaxis renders the brain resistant to PQ-mediated oxidative perturbations and thus may be better exploited as a preventive approach to protect against oxidative-mediated neuronal dysfunctions.


Assuntos
Bacopa/química , Suplementos Nutricionais , Herbicidas/antagonistas & inibidores , Síndromes Neurotóxicas/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Paraquat/antagonistas & inibidores , Extratos Vegetais/uso terapêutico , Animais , Antioxidantes/normas , Antioxidantes/uso terapêutico , Biomarcadores/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Suplementos Nutricionais/normas , Dopamina/metabolismo , Etnofarmacologia , Herbicidas/administração & dosagem , Herbicidas/toxicidade , Injeções Intraperitoneais , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Ayurveda , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/normas , Fármacos Neuroprotetores/uso terapêutico , Síndromes Neurotóxicas/metabolismo , Paraquat/administração & dosagem , Paraquat/toxicidade , Extratos Vegetais/normas , Distribuição Aleatória
9.
Toxicology ; 336: 96-8, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26298007

RESUMO

Over the last decades, paraquat (1,1'-dimethyl-4,4'-bipyridilium dichloride; PQ) has been involved in numerous fatalities especially attributed to suicide attempts. Previously, it was shown that salicylates, namely sodium salicylate (NaSAL) and lysine acetylsalicylate (LAS) may form complexes with PQ, which may contribute to prevent its toxicity. The direct chemical reactivity between PQ and NaSAL was previously studied by liquid chromatography/electrospray ionization/mass spectrometry/mass spectrometry, showing the formation of complexes, though reported data was not fully conclusive. In the present study, the structure of the complex of PQ with NaSAL is fully characterized by crystallography. It was observed that PQ is complexed with 4 NaSAL molecules. Since formulations containing PQ and salicylates have been proposed, these results point that the stoichiometry of 1:4 (PQ:salicylates) should be considered to optimize prevention of PQ-mediated toxic effects.


Assuntos
Herbicidas/antagonistas & inibidores , Paraquat/antagonistas & inibidores , Salicilato de Sódio/farmacologia , Cristalografia , Herbicidas/toxicidade , Paraquat/química , Paraquat/toxicidade , Salicilato de Sódio/química
10.
Toxicol Mech Methods ; 25(7): 574-80, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26099602

RESUMO

A network of inflammation factors is related to pulmonary fibrosis induced by paraquat (PQ) poisoning. At high doses, the superantigen staphylococcal enterotoxin C1 (SEC1) can induce immunological unresponsiveness and inhibit release of inflammation factors. In this study, site-directed mutagenesis was performed at the H118 and H122 amino acid residues of SEC1 to reduce SEC1 toxicity. The SEC1 mutant showed significantly decreased pyrogenic toxicity, but retained clonal anergy at high dosages in vitro. Pretreatment with the SEC1 mutant prior to PQ poisoning in mice reduced symptom duration and severity, prolonged survival time, and decreased the splenocyte response to ConA induction. The SEC1 mutant also down-regulated several important cytokines related to fibrosis in the plasma after PQ poisoning. SEC1 decreased the expression of genes related to pulmonary fibrosis, including α-SMA, COL1a1, COL3 and TGF-ß1, in PQ poisoned mice. Histomorphological observation indicated alleviation of pathological changes in the lungs after SEC1 pretreatment compared to mice in the PQ group. In conclusion, the SEC1 mutant reduced pulmonary interstitial fibrosis induced by PQ poisoning.


Assuntos
Antígenos de Bactérias/uso terapêutico , Enterotoxinas/uso terapêutico , Herbicidas/toxicidade , Paraquat/toxicidade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/prevenção & controle , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/toxicidade , Proliferação de Células , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Enterotoxinas/genética , Enterotoxinas/toxicidade , Escherichia coli/genética , Feminino , Expressão Gênica/efeitos dos fármacos , Herbicidas/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese Sítio-Dirigida , Paraquat/antagonistas & inibidores , Fibrose Pulmonar/genética , Coelhos , Baço/citologia , Baço/efeitos dos fármacos , Superantígenos , Análise de Sobrevida
11.
Invest. clín ; 55(4): 352-364, dic. 2014. ilus, tab
Artigo em Inglês | LILACS | ID: lil-783089

RESUMO

We investigated the effect of melatonin (MEL) in the activities of cytosolic superoxide dismutase (SOD) and catalase as well as in the levels of H2O2 and mitochondrial malondialdehyde (MDA) in paraquat-intoxicated Drosophila melanogaster. Paraquat (40 mM) was administrated for 36 h. Three groups of flies intoxicated with paraquat were used: PQ (exposed during 36h to paraquat), PQ-MEL (exposed during 36h to paraquat and then treated with MEL [0.43 mM] for 12 days) and PQ-Control (maintained in standard corn meal for 12 days). Two additional groups without pre-intoxication with PQ were added: Control (maintained in standard corn meal) and MEL (treated with MEL for 12 days). Immediately after PQ intoxication the concentration of MDA (17.240 ± 0.554 nmoles MDA/mg protein) and H2O2 (3.313 ± 0.086 nmol hydrogen peroxide/mg protein) and the activities of SOD and catalase (419.667 ± 0.731 and 0.216 ± 0.009 Units/mg of protein, respectively) in the PQ group were significantly increased with respect to Control. After 12 days of intoxication with PQ, the PQ-Control flies showed increases in H2O2 (4.336 ± 0.108) and MDA levels (8.620 ± 0.156), and in the activities of SOD and catalase (692.570 ± 0.433 and 0.327 ± 0.003, respectively) as compared to PQ-MEL (p<0.001). Treatment with MEL extended the life span of the groups PQ-MEL and MEL when compared to their corresponding controls. Motor activity decreased significantly in PQ-Control and PQ-MEL flies, suggesting that the damage caused by PQ affected the nervous system of flies. Our findings showed that oxidative damage caused by paraquat was observed even after 12 days and that melatonin mitigates this damage.


Investigamos el efecto de la melatonina (MEL) en la actividad de la superóxido dismutasa citosólica (SOD) y la catalasa, así como en las concentraciones del H2O2 y del malondialdehido mitocondrial (MDA) en la toxicidad inducida por paraquat (PQ) en Drosophila melanogaster. El paraquat (40 mM) fue administrado durante 36h. Tres grupos de moscas se utilizaron después de la intoxicación con paraquat: PQ (expuestas a paraquat durante 36 h), PQ-MEL (expuestas durante 36 horas a PQ y luego tratadas con MEL [0,43 mM] por 12 días) y PQ-Control (mantenidas en medio estándar por 12 días). Se incluyeron dos grupos adicionales sin pre-intoxicación con PQ: Control (mantenido en medio estándar) y MEL (tratado con MEL por 12 días). Inmediatamente después de la intoxicación con PQ, las concentraciones de MDA (17,240 ± 0,554 nmol de MDA/mg de proteína), H2O2 (3,313 ± 0,086 nmol de H2O2/mg de proteína) y las actividades de la SOD y catalasa (419,667 ± 0,731 y 0,216 ± 0,009 unidades/mg de proteína, respectivamente) se incrementaron significativamente con respecto al Control. Doce días después de la intoxicación con PQ, las moscas PQ-Control mostraron un aumento en la concentración de H2O2 (4,336 ± 0,108), de los niveles de MDA (8,620 ± 0,156) y en las actividades de la SOD y la catalasa (692,570 ± 0,433 y 0,327 ± 0,003, respectivamente) en comparación con el grupo PQ-MEL (p<0,001). El tratamiento con MEL extendió el tiempo de vida de los grupos PQ-MEL y MEL en comparación con sus correspondientes controles. La actividad motora disminuyó significativamente en las moscas de los grupos PQ-Control y PQ-MEL, lo que sugiere que el PQ afectó el sistema nervioso de las moscas. Nuestros hallazgos demostraron que el daño oxidativo causado por paraquat en las moscas fue observado aún después de 12 días de intoxicadas y que la melatonina logró mitigar este daño.


Assuntos
Animais , Masculino , Antioxidantes/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Herbicidas/antagonistas & inibidores , Melatonina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Paraquat/antagonistas & inibidores , Catalase/análise , Avaliação Pré-Clínica de Medicamentos , Proteínas de Drosophila/análise , Drosophila melanogaster/fisiologia , Herbicidas/toxicidade , Peróxido de Hidrogênio/análise , Peroxidação de Lipídeos/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Malondialdeído/análise , Mitocôndrias/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Paraquat/toxicidade
12.
Biochem Biophys Res Commun ; 447(4): 666-71, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24755084

RESUMO

In this study, we demonstrated the protective effects of ß-hydroxybutyrate (ß-HB) against paraquat (PQ)-induced kidney injury and elucidated the underlying molecular mechanisms. By histological examination and renal dysfunction specific markers (serum BUN and creatinine) assay, ß-HB could protect the PQ-induced kidney injury in rat. PQ-induced kidney injury is associated with oxidative stress, which was measured by increased lipid peroxidation (MDA) and decreased intracellular anti-oxidative abilities (SOD, CAT and GSH). ß-HB pretreatment significantly attenuated that. Caspase-mediated apoptosis pathway contributed importantly to PQ toxicity, as revealed by the activation of caspase-9/-3, cleavage of PARP, and regulation of Bcl-2 and Bax, which were also effectively blocked by ß-HB. Moreover, treatment of PQ strongly decreased the nuclear Nrf2 levels. However, pre-treatment with ß-HB effectively suppressed this action of PQ. This may imply the important role of ß-HB on Nrf2 pathway. Taken together, this study provides a novel finding that ß-HB has a renoprotective ability against paraquat-induced kidney injury.


Assuntos
Ácido 3-Hidroxibutírico/farmacologia , Herbicidas/antagonistas & inibidores , Herbicidas/toxicidade , Rim/efeitos dos fármacos , Paraquat/antagonistas & inibidores , Paraquat/toxicidade , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Nitrogênio da Ureia Sanguínea , Caspase 3/metabolismo , Caspase 9/metabolismo , Catalase/metabolismo , Creatinina/sangue , Ativação Enzimática/efeitos dos fármacos , Glutationa/metabolismo , Rim/metabolismo , Rim/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Proteína X Associada a bcl-2/metabolismo
13.
Invest Clin ; 55(4): 352-64, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25558754

RESUMO

We investigated the effect of melatonin (MEL) in the activities of cytosolic superoxide dismutase (SOD) and catalase as well as in the levels of H2O2 and mitochondrial malondialdehyde (MDA) in paraquat-intoxicated Drosophila melanogaster. Paraquat (40 mM) was administrated for 36 h. Three groups of flies intoxicated with paraquat were used: PQ (exposed during 36h to paraquat), PQ-MEL (exposed during 36h to paraquat and then treated with MEL [0.43 mM] for 12 days) and PQ-Control (maintained in standard corn meal for 12 days). Two additional groups without pre-intoxication with PQ were added: Control (maintained in standard corn meal) and MEL (treated with MEL for 12 days). Immediately after PQ intoxication the concentration of MDA (17.240 +/- 0.554 nmoles MDA/mg protein) and H2O2 (3.313 +/- 0.086 nmol hydrogen peroxide/mg protein) and the activities of SOD and catalase (419.667 + 0.731 and 0.216 +/- 0.009 Units/mg of protein, respectively) in the PQ group were significantly increased with respect to Control. After 12 days of intoxication with PQ, the PQ-Control flies showed in- creases in H2O2 (4.336 +/- 0.108) and MDA levels (8.620 +/- 0.156), and in the activities of SOD and catalase (692.570 +/- 0.433 and 0.327 +/- 0.003, respectively) as compared to PQ-MEL (p<0.001). Treatment with MEL extended the life span of the groups PQ-MEL and MEL when compared to their corresponding controls. Motor activity decreased significantly in PQ-Control and PQ-MEL flies, suggesting that the damage caused by PQ affected the nervous system of flies. Our findings showed that oxidative damage caused by paraquat was observed even after 12 days and that melatonin mitigates this damage.


Assuntos
Antioxidantes/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Herbicidas/antagonistas & inibidores , Melatonina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Paraquat/antagonistas & inibidores , Animais , Catalase/análise , Proteínas de Drosophila/análise , Drosophila melanogaster/fisiologia , Avaliação Pré-Clínica de Medicamentos , Herbicidas/toxicidade , Peróxido de Hidrogênio/análise , Peroxidação de Lipídeos/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Masculino , Malondialdeído/análise , Mitocôndrias/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Paraquat/toxicidade
14.
Environ Toxicol Pharmacol ; 36(3): 750-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23958967

RESUMO

This study aimed to investigate the beneficial effect of diphenyl diselenide (PhSe)2 on paraquat (PQ) induced alterations in rats liver. Adult male Wistar rats received (PhSe)2 at 10 mg kg(-1), by oral administration (p.o.), during five consecutive days. Twenty-four hours after the last (PhSe)2 dose, rats received PQ at 15 mg kg(-1), in a single intraperitoneally injection (i.p.). Seventy-two hours after PQ exposure, animals were sacrificed by decapitation for blood and liver samples obtainment. Histological alterations induced by PQ exposure, such as inflammatory cells infiltration and edema, were prevented by (PhSe)2 administration. Moreover, (PhSe)2 prevented hepatic lipid peroxidation (LPO) induced by PQ and was effective in reducing the myeloperoxidase (MPO) activity in liver, which was enhanced by PQ exposure. (PhSe)2 also was effective in protecting against the reduction in ascorbic acid and non-protein thiols (NPSH) levels induced by PQ. The inhibition of glutathione S-transferase (GST) activity, in rats exposed to PQ, was normalized by (PhSe)2 pre-treatment, whereas the inhibition of catalase (CAT) activity was not prevented by (PhSe)2. The serum alkaline phosphatase (ALP) inhibition, induced by PQ administration, was also prevented by (PhSe)2 pre-treatment. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were not modified by PQ and/or (PhSe)2 administration. Therefore, (PhSe)2 pre-treatment was effective in protecting against the hepatic alterations induced by PQ in rats. This protective effect can involve the antioxidant and anti-inflammatory properties of (PhSe)2.


Assuntos
Derivados de Benzeno/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Herbicidas/antagonistas & inibidores , Herbicidas/toxicidade , Compostos Organosselênicos/farmacologia , Paraquat/antagonistas & inibidores , Paraquat/toxicidade , Animais , Ácido Ascórbico/metabolismo , Catalase/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/patologia , Testes de Função Hepática , Masculino , Peroxidase/metabolismo , Ratos , Ratos Wistar , Compostos de Sulfidrila/metabolismo
15.
Food Chem Toxicol ; 59: 129-36, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23756170

RESUMO

Glyphosate is an active ingredient of the most widely used herbicide and it is believed to be less toxic than other pesticides. However, several recent studies showed its potential adverse health effects to humans as it may be an endocrine disruptor. This study focuses on the effects of pure glyphosate on estrogen receptors (ERs) mediated transcriptional activity and their expressions. Glyphosate exerted proliferative effects only in human hormone-dependent breast cancer, T47D cells, but not in hormone-independent breast cancer, MDA-MB231 cells, at 10⁻¹² to 10⁻6M in estrogen withdrawal condition. The proliferative concentrations of glyphosate that induced the activation of estrogen response element (ERE) transcription activity were 5-13 fold of control in T47D-KBluc cells and this activation was inhibited by an estrogen antagonist, ICI 182780, indicating that the estrogenic activity of glyphosate was mediated via ERs. Furthermore, glyphosate also altered both ERα and ß expression. These results indicated that low and environmentally relevant concentrations of glyphosate possessed estrogenic activity. Glyphosate-based herbicides are widely used for soybean cultivation, and our results also found that there was an additive estrogenic effect between glyphosate and genistein, a phytoestrogen in soybeans. However, these additive effects of glyphosate contamination in soybeans need further animal study.


Assuntos
Neoplasias da Mama/induzido quimicamente , Disruptores Endócrinos/toxicidade , Receptor alfa de Estrogênio/agonistas , Receptor beta de Estrogênio/agonistas , Glicina/análogos & derivados , Herbicidas/toxicidade , Proteínas de Neoplasias/agonistas , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Disruptores Endócrinos/química , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Estrogênios/química , Estrogênios/toxicidade , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Reporter/efeitos dos fármacos , Genisteína/farmacologia , Glicina/antagonistas & inibidores , Glicina/toxicidade , Herbicidas/antagonistas & inibidores , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Hormônio-Dependentes/induzido quimicamente , Neoplasias Hormônio-Dependentes/metabolismo , Elementos de Resposta/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos
16.
PLoS One ; 8(3): e57651, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23526948

RESUMO

BACKGROUND: Exposure to pesticides and industrial toxins are implicated in cardiovascular disease. Paraquat (PAR) is a toxic chemical widely used as an herbicide in developing countries and described as a major suicide agent. The hypothesis tested here is that PAR induced myocardial dysfunction may be attributed to altered mechanisms of Ca(2+) transport which are in turn possibly linked to oxidative stress. The mechanisms of PAR induced myocardial dysfunction and the impact of antioxidant protection was investigated in rat ventricular myocytes. METHODOLOGY: Forty adult male Wistar rats were divided into 4 groups receiving the following daily intraperitoneal injections for 3 weeks: Group 1 PAR (10 mg/kg), Control Group 2 saline, Group 3 vitamin E (100 mg/kg) and Group 4 PAR (10 mg/kg) and vitamin E (100 mg/kg). Ventricular action potentials were measured in isolated perfused heart, shortening and intracellular Ca(2+) in electrically stimulated ventricular myocytes by video edge detection and fluorescence photometry techniques, and superoxide dismutase (SOD) and catalase (CAT) levels in heart tissue. PRINCIPAL FINDINGS: Spontaneous heart rate, resting cell length, time to peak (TPK) and time to half (THALF) relaxation of myocyte shortening were unaltered. Amplitude of shortening was significantly reduced in PAR treated rats (4.99±0.26%) and was normalized by vitamin E (7.46±0.44%) compared to controls (7.87±0.52%). PAR significantly increased myocytes resting intracellular Ca(2+) whilst TPK and THALF decay and amplitude of the Ca(2+) transient were unaltered. The fura-2-cell length trajectory during the relaxation of the twitch contraction was significantly altered in myocytes from PAR treated rats compared to controls suggesting altered myofilament sensitivity to Ca(2+) as it was normalized by vitamin E treatment. A significant increase in SOD and CAT activities was observed in both PAR and vitamin E plus PAR groups. CONCLUSIONS: PAR exposure compromised rats heart function and ameliorated by vitamin E treatment.


Assuntos
Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Paraquat/antagonistas & inibidores , Vitamina E/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Catalase/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Herbicidas/antagonistas & inibidores , Herbicidas/toxicidade , Técnicas In Vitro , Masculino , Paraquat/toxicidade , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
17.
Biochem Biophys Res Commun ; 432(4): 689-94, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23416354

RESUMO

Paraquat is a commonly used herbicide; however, it is highly toxic to humans and animals. Exposure to paraquat causes severe lung damage, leading to pulmonary fibrosis. However, it has not been well clarified as how paraquat causes cellular damage, and there is no established standard therapy for paraquat poisoning. Meanwhile, endoplasmic reticulum stress (ERS) is reported to be one of the causative factors in many diseases, although mammalian cells have a defense mechanism against ERS-induced apoptosis (unfolded protein response). Here, we demonstrated that paraquat changed the expression levels of unfolded protein response-related molecules, resulting in ERS-related cell death in human lung epithelial A549 cells. Moreover, treatment with sodium tauroursodeoxycholate (TUDCA), a chemical chaperone, crucially rescued cells from death caused by exposure to paraquat. These results indicate that paraquat toxicity may be associated with ERS-related molecules/events. Through chemical chaperone activity, treatment with TUDCA reduced paraquat-induced ERS and mildly suppressed cell death. Our findings also suggest that TUDCA treatment represses the onset of pulmonary fibrosis caused by paraquat, and therefore chemical chaperones may have novel therapeutic potential for the treatment of paraquat poisoning.


Assuntos
Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Herbicidas/antagonistas & inibidores , Pulmão/citologia , Paraquat/antagonistas & inibidores , Mucosa Respiratória/efeitos dos fármacos , Ácido Tauroquenodesoxicólico/farmacologia , Caspase 3/biossíntese , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/metabolismo , Herbicidas/toxicidade , Humanos , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Paraquat/toxicidade , Fatores de Transcrição de Fator Regulador X , Mucosa Respiratória/citologia , Mucosa Respiratória/enzimologia , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos
18.
Biosci Biotechnol Biochem ; 76(7): 1401-3, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22785467

RESUMO

Two new iridoids, jatadoids A (1) and B (2), and two known compounds (3 and 4) were isolated from Valeriana jatamansi. Their structures were elucidated on the basis of extensive spectroscopic analyses (IR, ESI-MS, HR-ESI-MS, 1D and 2D NMR). Compound 1 possessed an isovaleroxy group at the C-3 position that has previously been unreported in the class of iridoids. Four compounds were evaluated and compounds 1 and 3 showed moderate neuroprotective effects against MPP+-induced neuronal cell death in human dopaminergic neuroblastoma SH-SY5Y cells.


Assuntos
Iridoides/isolamento & purificação , Fármacos Neuroprotetores/isolamento & purificação , Raízes de Plantas/química , Valeriana/química , 1-Metil-4-fenilpiridínio/antagonistas & inibidores , 1-Metil-4-fenilpiridínio/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Herbicidas/antagonistas & inibidores , Herbicidas/toxicidade , Humanos , Iridoides/farmacologia , Estrutura Molecular , Fármacos Neuroprotetores/farmacologia , Ressonância Magnética Nuclear Biomolecular , Espectrometria de Massas por Ionização por Electrospray
19.
Food Chem Toxicol ; 50(6): 2123-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22426356

RESUMO

The effect of ethanolic and aqueous extracts from leaves and bark of Uncaria tomentosa was studied, with particular attention to catalase activity (CAT - EC. 1.11.1.6). We observed that all tested extracts, at a concentration of 250 µg/mL were not toxic to erythrocyte catalase because they did not decreased its activity. Additionally, we investigated the protective effect of extracts on changes in CAT activity in the erythrocytes incubated with sodium salt of 2,4-dichlorophenoxyacetic acid (2,4-D-Na) and its metabolites i.e., 2,4-dichlorophenol (2,4-DCP) and catechol. Previous investigations showed that these chemicals decreased activity of erythrocyte catalase (Bukowska et al., 2000; Bukowska and Kowalska, 2004). The erythrocytes were divided into two portions. The first portion was incubated for 1 and 5h at 37°C with 2,4-D-Na, 2,4-DCP and catechol, and second portion was preincubated with extracts for 10 min and then incubated with xenobiotics for 1 and 5h. CAT activity was measured in the first and second portion of the erythrocytes. We found a protective effect of the extracts from U. tomentosa on the activity of catalase incubated with xenobiotics studied. Probably, phenolic compounds contained in U. tomentosa scavenged free radicals, and therefore protected active center (containing -SH groups) of catalase.


Assuntos
Ácido 2,4-Diclorofenoxiacético/antagonistas & inibidores , Ácido 2,4-Diclorofenoxiacético/toxicidade , Unha-de-Gato/química , Catalase/antagonistas & inibidores , Catalase/metabolismo , Eritrócitos/enzimologia , Herbicidas/antagonistas & inibidores , Herbicidas/toxicidade , Antioxidantes/metabolismo , Catalase/sangue , Catecóis/antagonistas & inibidores , Catecóis/toxicidade , Clorofenóis/antagonistas & inibidores , Clorofenóis/toxicidade , Eritrócitos/efeitos dos fármacos , Humanos , Técnicas In Vitro , Casca de Planta/química , Extratos Vegetais/farmacologia , Folhas de Planta
20.
Environ Sci Pollut Res Int ; 19(6): 2044-54, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22231370

RESUMO

PURPOSE: Isoproturon, a herbicide belonging to the phenylurea family, is widely used to kill weeds in soils. Recent study indicated that isoproturon has become a contaminant in ecosystems due to its intensive use, thus bringing environmental risks to crop production safety. Salicylic acid (SA) is one of the components in plant defense signaling pathways and regulates diverse physiological responses to biotic and environmental stresses. The purpose of the study is to help to understand how SA mediates the biological process in wheat under isoproturon stress. METHODS: Wheat seeds (Triticum aestivum, cv. Yangmai 13) were surface-sterilized and placed on moist filter paper for germination. After 24 h, the germinating seeds were placed on a plastic pot (1 L) containing 1,120 g soil mixed with isoproturon at 4 mg kg(-1) soil. After 4 days, wheat leaves were sprayed with 5 mg L(-1) SA. The SA treatment was undertaken once a day and lasted for 6 days, when the third true leaf was well developed. For control seedlings, only water was sprayed. Seedlings were grown under a light intensity of 300 µmol m(-2) s(-1) with a light/dark cycle of 12/12 h at 25°C, and watered to keep 70% relative water content in soils. RESULTS AND DISCUSSION: We investigated the role of SA in alleviating isoproturon-induced toxicity in the food crop wheat (T. aestivum). Plants exposed to 4 mg kg(-1) isoproturon showed growth stunt and oxidative damage, but concomitant treatment with 5 mg L(-1) SA was able to attenuate the toxic effect. Isoproturon in soils was readily accumulated by wheat, but such accumulation can be blocked significantly by SA application. Treatment with SA decreased the abundance of O(2) (.-) and H(2)O(2), as well as activities of antioxidant enzymes, and increased activities of catalase in isoproturon-exposed plants. The enzyme activities were confirmed by the native polyacrylamide gel electrophoresis. Further, an RT-PCR-based assay was performed to show that several transcripts coding antioxidant enzymes were increased with isoproturon but decreased by SA. CONCLUSION: The present results indicate that exogenous SA is able to improve the wheat tolerance to isoproturon toxicity.


Assuntos
Herbicidas/toxicidade , Compostos de Fenilureia/toxicidade , Ácido Salicílico/farmacologia , Triticum/efeitos dos fármacos , Clorofila/análise , Herbicidas/análise , Herbicidas/antagonistas & inibidores , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Compostos de Fenilureia/análise , Compostos de Fenilureia/antagonistas & inibidores , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Triticum/química , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...